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. . . . . .

Disclaimer

The slides are intended to serve as records for a recitation for math
244 course. It should never serve as any replacement for formal
lectures or as any reviewing material. The author is not responsible
for consequences brought by inappropriate use.

There may be errors. Use them at your own discretion. Anyone who
notify me with an error will get some award in grade points.
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. . . . . .

Special Announcement

Please watch MIT Lecture 13 before reading my slides.

I will only use the Exponentila-Shift Rule mentioned in the MIT
lecture, as it applies to all our cases. I won’t use anything else. In
particular, the method of complexification will not be used. You don’t
have to know that as well.

Although the instructor skipped variation of parameter, I will talk
about it in additional slides, as the method is very general and
actually reduction of order can be treated as an application. If you are
not interested, just don’t look at it.
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. . . . . .

Structure of the solution

For the second order linear inhomogeneous ODE

ay ′′ + by ′ + cy = g(t),

the general solution looks like

y(t) = c1y1(t) + c2y2(t) + P(t),

where

c1y1(t) + c2y2(t) are called complementary solutions and it is
precisely the general solution to ay ′′ + by ′ + cy = 0.

P(t) is a particular solution. In other words,
aP ′′(t) + bP ′(t) + cP(t) = g(t).

If the g(t) is special enough, then you can proceed by guessing the
solution. Otherwise, you have to use variation of parameters, which works
for all cases but usually is less convenient.
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. . . . . .

How to Guess a particular solution

The template for your first try is summarized as below:

If g(t) looks like

g(t) = eαt(ant
n + an−1t

n−1 + · · ·+ a0),

then try
P(t) = eαt(Ant

n + An−1t
n−1 + · · ·+ A0),

where An, · · · ,A0 are coefficients to be determined.

If g(t) looks like

g(t) = eαt(a cosβt + b sinβt),

then try
P(t) = eαt(A cosβt + B sinβt)

where A,B are coefficients to be determined.

If your first try fails, multiply your template with t and try again. If the
second try fails, multiply your template with another t and try again. It is
guaranteed that after finite attempts you will suceed.
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. . . . . .

Examples and remarks

g(t) = 3.

This case you have α = 0 and n = 0. Try the template
P(t) = A.

g(t) = et(t + 2), i.e., α = 1, n = 1, a1 = 1, a0 = 2. Try the template
P(t) = et(A1t + A0).

g(t) = t2e3t , i.e., α = 3, n = 2, a2 = 1, a1 = a0 = 0. Try the
template P(t) = et(A2t

2 + A1t + A0).
CAUTIOUS: Even you have only 1 term, since your polynomial is of
degree 2, THERE SHOULD BE 3 UNDETERMINED
COEFFICIENTS. In general if your polynomial is of degree n, there
should be n + 1 of undetermined coefficients, REGARDLESS how
many the lower terms there are.
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Examples and remarks

Another example of this type:

g(t) = (t4 + t)e3t , since you have a
degree 4 polynomial, the template should be
P(t) = et(A4t

4 + A3t
3 + A2t

2 + A1t
1 + A0). The lower terms

DON’T MATTER here.

g(t) = e6t(2 cos t + 3 sin t). Try the template
P(t) = e6t(A cos t + B sin t).

g(t) = e3t cos t. Although you have only one term, you still have to
try P(t) = e3t(A cos t + B sin t).

g(t) = ett2 cos t. This case is in fact too complicated to use this
method. Instead, use variation of parameters.
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1 + A0). The lower terms

DON’T MATTER here.

g(t) = e6t(2 cos t + 3 sin t). Try the template
P(t) = e6t(A cos t + B sin t).

g(t) = e3t cos t. Although you have only one term, you still have to
try P(t) = e3t(A cos t + B sin t).

g(t) = ett2 cos t. This case is in fact too complicated to use this
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. . . . . .

Facts that will be used in solving problems

General fact:

If P1(t) is a particular solution for
ay ′′ + by ′ + cy = g1(t), and P2(t) is a particular solution for
ay ′′ + by ′ + cy = g2(t), then P1(t) + P2(t) is a particular solution for
ay ′′ + by ′ + cy = g1(t) + g2(t).

Exercise: Prove this fact. (very easy)

So for example, if the ODE looks like

y ′′ + 2y ′ − 3y = et(t2 + 4) + e−3t cos 3t + cos 4t + t2,

then you should find particular solutions
P1(t) for y

′′ + 2y ′ − 3y = et(t2 + 4),
P2(t) for y

′′ + 2y ′ − 3y = e3t cos 3t,
P3(t) for y

′′ + 2y ′ − 3y = cos 4t, and
P4(t) for y

′′ + 2y ′ − 3y = t2.
Then P(t) = P1(t) + P2(t) + P3(t) + P4(t) is a particular solution
for this ODE.
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. . . . . .

Facts that will be used in solving problems

A tedious yet complete and comprehensive summary can be found on
Page 181 of the book.

I will show the full solution for this ridiculously fabricated ODE

y ′′ + 2y ′ − 3y = et(t2 + 4) + e−3t cos 3t + cos 4t + t2.

However in industry, g(t) may have 40 to 50 summands and that’s
why you should learn how to use mathematica / maple.
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. . . . . .

Exponential-Shift Rule

In computations, dealing with multiple derivatives often leads to messy
algebras.

And Dr. Mattuck’s Exponential-Shift Rule actually helps simplify
the computation (although you don’t see any directly-related examples in
his lecture). The rule is expressed as follows:
.
Theorem
..

......

Let f (x) be a polynomial, Denote D = d
dt , the derivative operator. Then

for any function u(t) and for any number a,

f (D)(eatu(t)) = eat f (D + a)u(t).

In words, to move eat out of f (D)(eatu(t)), you should pay the price of
modifying f (D) into f (D + a), getting eat(f (D + a)u(t)).
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. . . . . .

Exponential-Shift Rule

Remarks:

Please check 27:00 of the MIT Lecture 13 for a proof. (Note that he
used a different symbol p)

Please check 0:00 of the MIT Lecture 14 for the interpretation of
f (D).

In our scenario where the ODE is ay ′′ + by ′ + cy = g(t), basically we
will always take f (x) = ax2 + bx + c .

The most cited example of f (D) acting on a function is

f (D)y =

(
a
d2

dt2
+ b

d

dt
+ c

)
y = ay ′′ + by ′ + cy .

You will see how this technique is used in the following example
problems.
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. . . . . .

The ridiculously fabricated example problem

Find the general solution of

y ′′ + 2y ′ − 3y = et(t2 + 4) + e−3t cos 3t + cos 4t + t2.

The complementary solution for this ODE is

C1e
t + C2e

−3t

To get a particular solution, let’s get the particular solution for the 4
summands on the right hand side separately. Let’s first deal with the
ODE

y ′′ + 2y ′ − 3y = et(t2 + 4).
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. . . . . .

The ridiculously fabricated example problem

The template you should try

is P(t) = et(At2 + Bt + C ) (I hate
writing subscripts so I’ll just use these three guys). In contrast to the
way I taught in class, USE THE EXPONENTIAL-SHIFT RULE as
follows
Let f (x) = x2 + 2x − 3 = (x − 1)(x + 3). Then

P ′′ + 2P ′ − 3P = (D2 + 2D − 3)P = f (D)P

= f (D)(et(At2 + Bt + C ))

(Use the exponential-shift rule)

= et f (D + 1)(At2 + Bt + C )

= et(D + 1− 1)(D + 1 + 3)(At2 + Bt + C )

= et(D2 + 4D)(At2 + Bt + C ).
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P ′′ + 2P ′ − 3P = (D2 + 2D − 3)P = f (D)P

= f (D)(et(At2 + Bt + C ))

(Use the exponential-shift rule)

= et f (D + 1)(At2 + Bt + C )

= et(D + 1− 1)(D + 1 + 3)(At2 + Bt + C )

= et(D2 + 4D)(At2 + Bt + C ).
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Notice that

D(At2 + Bt + C ) = (2At + B)

D2(At2 + Bt + C ) = 2A.

So (D2 + 4D)(At2 + Bt + C )

= D2(At2 + Bt + C ) + 4D(At2 + Bt + C )

= 2A+ 4(2At + B) = 8At + 2A+ 4B.

Therefore P ′′ + 2P ′ − 3P = et(8At + 2A+ 4B).

But the right hand side we have is et(t2 + 4). There is no term
corresponds to t2et so our first try fails.

Remark: The first try always fails whenever your eαt corresponds to
part of the complementary solutions (in this case et). And it is very
easy to see this from the above arguments: the f (D + 1) above
DOES NOT HAVE A CONSTANT TERM! Think about why this
leads to the failure of first try.
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The ridiculously fabricated example problem

Let’s do the second try:
P(t) = tet(At2 + Bt + C ) = et(At3 + Bt2 + Ct).

Again we use the
exponential-shift rule to compute P ′′ + 2P ′ − 3P (Recall that
f (x) = x2 + 2x − 3 = (x − 1)(x + 3)):

P ′′ + 2P ′ − 3P = (D2 + 2D − 3)P = f (D)P

= f (D)(et(At3 + Bt2 + Ct))

= et f (D + 1)(At3 + Bt2 + Ct)

= et(D2 + 4D)(At3 + Bt2 + Ct).

Notice that D(At3 + Bt2 + Ct) = 3At2 + 2Bt + C ,

D2(At3 + Bt2 + Ct) = 6At + 2B.

Then P ′′ + 2P ′ − 3P = et(D2 + 4D)(At3 + Bt2 + Ct)

= et(6At + 2B + 4(3At2 + 2Bt + C ))

= et(12A2 + (6A+ 8B)t + 2B + 4C )
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The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,

B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12

= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,

C =
1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B)

= 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2

=
33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

Now compare the coefficients:

et(12A2 + (6A+ 8B)t + 2B + 4C ) = et(t2 + 4)

⇒ 12A = 1, 6A+ 8B = 0, 2B + 4C = 4

⇒ A =
1

12
,B = −6

8
· 1

12
= − 1

16
,C =

1

4
(4− 2B) = 1− B

2
=

33

32

⇒ P(t) = (
1

12
t3 − 1

16
t2 +

33

32
t)et .

Fei Qi (Rutgers University) Recitation 7: a. Finding particular solutions March 13, 2014 16 / 42



. . . . . .

The ridiculously fabricated example problem

CHECK YOUR SOLUTION!

Again use the exponential shift rule

P ′′ + 2P ′ − 3P = (D2 + 2D − 3)P = f (D)P

= f (D)[et(
1

12
t3 − 1

16
t2 +

33

32
t)]

= et f (D + 1)(
1

12
t3 − 1

16
t2 +

33

32
t)

= et(D2 + 4D)(
1

12
t3 − 1

16
t2 +

33

32
t)

= et(4(
3

12
t2 − 2

16
t +

33

32
) +

2× 3

12
t − 2

16
)

= et(t2 − 1

2
t +

33

8
+

1

2
t − 1

8
)

= et(t2 + 4)

So P(t) is a solution of y ′′ + 2y ′ − 3y = et(t2 + 4) and the first part
of the solution is done.
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The ridiculously fabricated example problem

Recall that our ODE is

y ′′ + 2y ′ − 3y = et(t2 + 4) + e−3t cos 3t + cos 4t + t2,

We now look at the second part.

Some redundant steps will be skipped in
the following computations.

Let P(t) be a particular solution of

y ′′ + 2y ′ − 3y = e−3t cos 3t.

In this case the template is going to be

P(t) = e−3t(A cos 3t + B sin 3t).

Find P ′′ + 2P ′ − 3P (Again f (x) = x2 + 2x − 3 = (x − 1)(x + 3)):

P ′′ + 2P ′ − 3P = f (D)(e−3t(A cos 3t + B sin 3t)

= e−3t f (D − 3)(A cos 3t + B sin 3t)

= e−3t(D − 3− 1)(D − 3 + 3)(A cos 3t + B sin 3t)

= e−3t(D2 − 4D)(A cos 3t + B sin 3t).
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The ridiculously fabricated example problem

Notice that

D(A cos 3t + B sin 3t) = −3A sin 3t + 3B cos 3t,

D2(A cos 3t + B sin 3t) = −9A cos 3t − 9B sin 3t.

Then (D2 − 4D)(A cos 3t + B sin 3t)

= −9A cos 3t − 9B sin 3t + 12A sin 3t − 12B cos 3t

= (12A− 9B) sin 3t + (−9A− 12B) cos 3t.

Thus P ′′ + 2P ′ − 3P = e−3t(D2 − 4D)(A cos 3t + B sin 3t)

= e−3t [(12A− 9B) sin 3t + (−9A− 12B) cos 3t]

Now compare the coefficients:

e−3t [(12A− 9B) sin 3t + (−9A− 12B) cos 3t] = e−3t cos 3t

⇒ 12A− 9B = 0, − 9A− 12B = 1,

⇒ A = −1/25,B = −4/75
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The ridiculously fabricated example problem

So our particular solution would then be

P(t) = e−3t(− 1

25
cos 3t − 4

75
sin 3t).

CHECK!

P ′′ + 2P ′ − 3P = e−3t(D2 − 4D)(− 1

25
cos 3t − 4

75
sin 3t)

= e−3t(
4

25
(−3 sin 3t) +

16

75
(3 cos 3t)

+
1

25
(9 cos 3t) +

4

75
9 sin 35)

= e−3t(
16 + 9

25
cos 3t +

12− 4× 3

25
sin 3t)

= e−3t cos 3t

So it is a particular solution.
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. . . . . .

The ridiculously fabricated example problem

Remark:

Why first try did not fail even when you have a e−3t in this
case? If you have understood MIT Lecture 13 well enough,
e−3t cos 3t corresponds to the characteristic root −3 + 3i . In other
words, if the ODE looks like

y ′′ − 6y + 18 = e−3t cos 3t.

then your first try should fail.

Remark: From here you can also conclude that for second order linear
homogeneous ODE, at most you need to make a second try. Think
about why.
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. . . . . .

The ridiculously fabricated example problem

Now let’s look at the third term:

y ′′ + 2y ′ − 3y = cos 4t

The template is then P(t) = A cos 4t +B sin 4t. Since you don’t have
exponential here, it would be easy to compute directly:

P ′′ + 2P ′ − 3P = −16A cos 4t − 16B sin 4t

+ 2(−4A sin 4t + 4B cos 4t)

− 3(A cos 4t + B sin 4t)

= (−19A+ 8B) cos 4t + (−19B − 8A) sin 4t.

Compare the coefficients one has

−19A+ 8B = 1, − 19B − 8A = 0,

⇒ A = −19B/8, (192 + 64)B = (361 + 64)B = 425B = 8,

⇒ A = −19/425,B = 8/425.
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Compare the coefficients one has

−19A+ 8B = 1,

− 19B − 8A = 0,

⇒ A = −19B/8, (192 + 64)B = (361 + 64)B = 425B = 8,

⇒ A = −19/425,B = 8/425.
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The ridiculously fabricated example problem

So the particular solution is

P(t) = − 19

425
cos 4t +

8

425
sin 4t.

CHECK YOUR SOLUTION (skip).

Finally let’s look at the third term:

y ′′ + 2y ′ − 3y = t2
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The ridiculously fabricated example problem

The template is then P(t) = At2 + Bt + C . Again you don’t have
exponential and it would be easy to compute:

P ′′ + 2P ′ − 3P = 2A+ 2(2At + B)− 3(At2 + Bt + C )

= −3At2 + (4A− 3B)t + 2A+ 2B − 3C

Compare the coefficients one has

−3A = 1, 4A− 3B = 0, 2A+ 2B − 3C = 0

⇒ A = −1/3,B = −4/9,C = (2A+ 2B)/3 = −14/27.

⇒ P(t) = −1

3
t2 − 4

9
t − 14

27
.

CHECK YOUR SOLUTION (skip).
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The ridiculously fabricated example problem

And finally you combine all the 4 particular solutions

together with
the complementary solution, to get the general solution

y(t) = C1e
t + C2e

−3t + (
1

12
t3 − 1

16
t2 +

33

32
t)et

+ e−3t(− 1

25
cos 3t − 4

75
sin 3t)− 19

425
cos 4t +

8

425
sin 4t

− 1

3
t2 − 4

9
t − 14

27
.
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. . . . . .

Quiz Problem 2

Find the general solution to the differential equation

y ′′ + y = cos t + t

The complementary solution is

y(t) = c1 cos t + c2 sin t.

For the second part of the equation, namely

y ′′ + y = t,

if you are as lazy as me, you can just try P(t) = t and bingo. Or you
can proceed by trying P(t) = Ct + D to get C = 1,D = 0.
Now we deal the first part, namely

y ′′ + y = cos t.

The template for the first try is P(t) = A cos t + B sin t. But this is
part of the complementary solution. Therefore it is immediate that
the first try fails.
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Quiz Problem 2

Multiply your template by another t.

Then you have to run into the
messy algebra as I did in class. Beforehand, note that

(t cos t)′ = cos t − t sin t, (t sin t)′ = sin t + t cos t

Now let’s get P,P ′,P ′′:

P(t) = At cos t + Bt sin t,

P ′(t) = A(cos t − t sin t) + B(sin t + t cos t)

= A cos t + B sin t + Bt cos t − At sin t

P ′′(t) = −A sin t + B cos t + B(cos t − t sin t)− A(sin t + t cos t)

= −2A sin t + 2B cos t − At cos t − Bt sin t.

P ′′ + P = −2A sin t + 2B cos t
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Quiz Problem 2

Compare the coefficients

−2A sin t + 2B cos t = cos t

⇒ −2A = 0, 2B = 1

⇒ A = 0,B = 1/2.

So the particular solution we are looking for is

P(t) =
1

2
t sin t

So the general solution for the whole ODE is

y(t) = C1 cos t + C2 sin t +
1

2
t sin t + t

Remember to check your solution.
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. . . . . .

Quiz Problem 2: Remarks

It is not impossible to generalize the exponential-shift rule to simplify
the computation.

However, the generalization requires that you have
a substantial understanding of complex functions and the process of
complexification. Considering your workload, I decide not to
introduce it here. But anyone who is very interested shall contact me.
I’ll either teach in person or prepare some additional slides.
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. . . . . .

Quiz Problem 2: Remarks

If you use the exponential input theorem in Dr. Mattuck’s lecture,

then you immediate get

P̃(t) =
te it

f ′(i)
=

t cos t + it sin t

2i

and the particular solution is simply the real part, namely

P(t) =
1

2
t sin t

You can actually see the technique issue of complexification: you have
to be very clear that when you shall take real part and when you shall
take complex part. The slightest confusion or mistake will give a
wrong solution. That’s why I don’t want to talk about it here. After
several weeks of heavy courseload elsewhere, you may forget the right
way of doing it.
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. . . . . .

Homework Problem 3.5.7

Find the general solution of the ODE

y ′′ + 9y = t2e3t + 6

The complementary solution is

C1 cos 3t + C2 sin 3t

Again separate it. The second term would be easy: Just put in
P(t) = A and by P ′′ + 9P = 9A = 6 one has P(t) = 2/3.

Let’s look at the first term. The template for the first try is

P(t) = e3t(At2 + Bt + C )
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. . . . . .

Homework Problem 3.5.7

Use the exponential-shift law to compute P ′′ + 9P.

P ′′ + 9P = (D2 + 9)e3t(At2 + Bt + C )

= e3t((D + 3)2 + 9)(At2 + Bt + C )

= e3t(D2 + 6D + 18)(At2 + Bt + C )

= e3t(2A+ 6(2At + B) + 18(At2 + Bt + C ))

= e3t(18At2 + (12A+ 18B)t + 2A+ 6B + 18C

Compare coefficients

e3t(18At2 + (12A+ 18B)t + 2A+ 6B + 18C = t2e3t

⇒ 18A = 1, 12A+ 18B = 0, 2A+ 6B + 18C = 0

⇒ A = 1/18,B = −2A/3 = −1/27,C = −(2A+ 6B)/18 = 1/162
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. . . . . .

Homework Problem 3.5.7

So the particular solution we are looking for

is

P(t) = e3t(
1

18
t2 − 1

27
t +

1

162
)

CHECK! (skipped)

Combined with the results above, the general solution is

y(t) = C1 cos 3t + C2 sin 3t

+ e3t(
1

18
t2 − 1

27
t +

1

162
) +

2

3
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. . . . . .

Homework Problem 3.5.12

Find the general solution of

y ′′ + ω2
0y = cosωt

This equation is the resonance equation discussed in great detail in
MIT Lecture 14. Please watch the complete analysis for it. I am here
just recording my boardwork when teaching Section 10.

The complementary solution to this ODE is

C1 cosω0t + C2 sinω0t

The template for the first try is

P(t) = A cosω0t + B sinω0t.

But this is part of the complementary solution, therefore the first try
fails.
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Homework Problem 3.5.12

Multiply by t

and try

P(t) = At cosω0t + Bt sinω0t.

For convenience of use below, note that

(t cosω0t)
′ = cosω0t − ω0t sinω0t

(t sinω0t)
′ = sinω0t + ω0t cosω0t

Now get all the derivatives:

P ′(t) = A(cosω0t − ω0t sinω0t) + B(sinω0t + ω0t cosω0t)

= A cosω0t + B sinω0t + Bω0t cosω0t − Aω0t sinω0t

P ′′(t) = −Aω0 sinω0t + Bω cosω0t

+ Bω0(cosω0t − ω0t sinω0t)− Aω(sinω0t + ω0t cosω0t)

= −2Aω0 sinω0t + 2Bω0 cosω0t − Aω2
0 cosω0t − Bω2

0t sinω0t.

So P ′′ + ω2
0P = −2Aω0 sinω0t + 2Bω0 cosω0t.
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. . . . . .

Homework Problem 3.5.12

Compare the coefficients:

−2Aω0 sinω0t + 2Bω0 cosω0t = cosω0t

⇒ A = 0,B = 1/(2ω0).

So

P(t) =
1

2ω0
t sinω0t

.

So the general solution of this ODE is

C1 cosω0t + C2 sinω0t +
1

2ω0
t sinω0t.
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. . . . . .

Homework Problem 3.5.12: Remarks

Again if you use the exponential input theorem,

it is immediate that

P̃(t) =
te iω0t

2ω0i
=

t cosω0t + it sinω0t

2ω0i

and the particular solution is the real part

P(t) =
1

2ω0
t sinω0t

When ω0 = 1, you should easily recover the first part of the Quiz
Problem.

If the right hand side becomes sinω0t, you should then take the
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. . . . . .

Book Problem 3.5.17

Solve the IVP

y ′′ − 2y ′ + y = tet + 4, y(0) = 1, y ′(0) = 0

The complementary solution is

C1e
t + C2te

t

Again separate it. It is immediate that P(t) = 4 is a solution of
y ′′ − 2y ′ + y = 4. So we just focus on the first term.

The template for first try is P(t) = et(At + B). You should see
immediately that this coincides with the complementary solutions. so
the first try fails.
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. . . . . .

Book Problem 3.5.17

Modify your template

as P(t) = et(At2 + Bt). Use exponential-shift
rule to compute

P ′′ − 2P ′ + P = (D − 1)2(et(At2 + Bt))

= et(D + 1− 1)2(At2 + Bt)

= etD2(At2 + Bt)

= et2A

There is nothing concerning the tet . So the second try fails.
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Book Problem 3.5.17

Modify your template as P(t) = et(At3 + Bt2).

Compute as follows

P ′′ − 2P ′ + P = (D − 1)2(et(At2 + Bt))

= etD2(At3 + Bt2)

= et(6At + 2B)

Compare the coefficients

et(6At + 2B) = tet

⇒ 6A = 1, 2B = 0

So

P(t) =
1

6
t3et

.
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= et(6At + 2B)

Compare the coefficients

et(6At + 2B) = tet

⇒ 6A = 1, 2B = 0

So

P(t) =
1

6
t3et

.
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. . . . . .

Book Problem 3.5.17

So the general solution of the ODE

is

y(t) = C1e
t + C2te

t +
1

6
t3et + 4

Put in the initial values, one gets the following equations

C1 + 4 = 1

C1 + C2 = 1

So C1 = −3,C2 = 4 and thus the solution to the IVP is

y(t) = −3et + 4tet +
1

6
t3et + 4
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The End
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